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Abstract. From the exact enumeration on a triangular lattice of trail configurations at the 
tricritical regime as the fugacity for intersections is increased, we find 4, = 0.68 ( 8 )  for the 
crossover exponent (and hence a, = 0.5 (2) for the specific heat exponent). It indicates the 
collapse transition of trails to differ from that of polymer chains at the 0 point in two 
dimensions. 

In a recent series of papers [ 1,2] evidence was presented for a new tricritical point in 
trails [3] (intersecting but non-overlapping walks), as the fugacity for intersections is 
increased. From extensive exact enumerations for the weighted number of configur- 
ations and series of the end-to-end distance, first estimates for the tricritical exponents 
-yt and v, were derived [ 1,2]. We recall that this tricritical point separates the swollen 
regime in which the trails have the scaling properties of self-avoiding walks [3-51 from 
a collapsed compact phase in which the size exponent v = l/d. A similar collapse was 
known for a very long time to occur at the 8 point of a self-avoiding chain due to 
monomer-monomer attraction [ 6 ] .  The Hamiltonian (magnetic analogue) for the 
trail-generating function [5] has a different symmetry at the tricritical point than that 
describing the 8 point. In particular for the trail d * = 4 is the upper critical dimension 
[5] while d" = 3 is that for the 8 point [ 6 ] .  Thus a new universality class with 
non-Gaussian behaviour in three dimensions is expected for the collapse of trails. 
Unfortunately the perturbative renormalisation group fails to exhibit a tricritical fixed 
point in d = 4 - E dimensions [5]. Therefore other methods, such as series expansions, 
are necessary to study this non-perturbative tricritical point. 

The evidence for this new tricritical point in three dimensions,, presented in [2], 
is quite convincing since the value obtained for the exponent of the number of 
configurations 7, = 0.43 (5)  practically rules out the possibility of a Gaussian behaviour 
with 'yt = 1. 

In two dimensions the results for the exponents found are v,= 0.525 (25), y t =  
1.25 (2) for the square lattice [l] and v, = 0.52 ( l ) ,  7, = 1.18 (2) for the triangular lattice 
[l]. These values are too close to those conjectured as exact for the 8 point [7], 
yo = 0.5774 and yo = 1.1428, to rule out the possibility for the two tricritical points to 
share the same universality class. 

We were therefore motivated to look for other exponents in order to clarify the 
issue of whether the tricritical trails are in the 8 point universality class. 
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In this letter we report first results for the crossover exponent C#I = 0.68 (8) and the 
specific heat exponent a = 2 - C#I-'= 0.5 (2). These values are drastically different from 
those of the 8 point, = -f and +e =$ [7]. These results are based on an analysis of 
the specific heat of trails from their exact enumeration (up to 1 = 15) on the triangular 
lattice. The series of cubic lattices, which suffer from the interference of the 'antifer- 
romagnetic' singularity, were too noisy to be analysed. In figure 1 we show the specific 
heat plots for the triangular lattice as presented in [l]. They represent the curves of 
h,( 8) for 1 = 9-15, which are defined by 

1 d2 
1 d6  

h, (e )  =- ?ln c , (e )=(I*(e) ) , - ( r (e ) ) :  

where 

and n(1, I )  are the total number of configurations with length 1 and I intersections. 
So h, (8)  are the approximate specific heats to order 1 and represent the relative 
fluctuations in the number of intersections as 8 (the chemical potential (the fugacity 
is f =  exp 8 )  for intersection) is varied. Their divergence at 8, is a signature of the 
collapse transition. In figure 2 we have plotted the maxima of each h, (e )  (as 8 is 
varied) against the order 1. The points, corresponding to 1 > 9, seem to be well on the 
onset of an asymptotic behaviour of the form 

max h,( 8) - 1". 
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Figure 1. The specific heat plots h,(B) for 1 = 9 ,  . . . , 15. 
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Figure 2. The plot of max h , ( B )  against 1, for 1 =9,. . . , 15. 

From the scaling behaviour of the specific heat 

hl (8)  - ( 6  - et)-"sE(e - W+I (4) 

x =  4. (5) 

it follows that 

where et is the tricritical value of the coupling 8 and g is a scaling function. 
To derive an estimate for x = +a we had to avoid as much as possible the non- 

singular contributions which are relatively important at small 1. We therefore proceeded 
as follows. For a given value of x we computed the slopes D1 between consecutive 
points in the curve at max h 1 ( 8 )  against 1": 

Dl=[max h1(8)-max h1~,(e)]/[1"-(l-1)"]. ( 6 )  
We look to minimise the differences between the 23, and choose as optimal x the 

value which minimises the expression 
1, 

/ = l i  
A(li, W =  C E D / / D / - ~ - ~ I * .  (7) 

We repeated these calculations for different pairs ( l i ,  lf) with li = 11, 12, 13 and 
lf = 13,14,15. The values extracted for 4 = $( 1 + x) with different pairs upon minimising 
A(li ,  If) are quoted in table 1. The values for 4 quoted above follow from the minimal 

Table 1. Values of 4 = f( 1 + x)  derived from minimising A(l , ,  I , )  (equation (7)). 

li 
If 

11 12 13 

13 0.689 - - 
14 0.604 0.601 - 
15 0.704 0.765 0.670 
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(6 = 0.60) and maximal ( 4  = 0.77) values in table 1. The values of CY were then extracted 
from the relation a = 2 - 4-l .  

These values represent an independent evidence that in two dimensions as well the 
trail tricritical point is not in the B point universality class. 

After completion of this work it was reported that MC calculations [ 8 ]  yield values 
of 4 and CY in agreement with these quoted above. 

This work was supported in part by the Xerox Webster Research Center and by the 
University of Rochester. 
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